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Abstract. It is argued that systems whose elements are renewed according to an extremal criterion
can generally be expected to exhibit long-term memory. This is verified for the minimal extremally
driven model, which is first defined and then solved for all system sizes N � 2 and times t � 0,
yielding exact expressions for the persistence R(t) = [1+t/(N−1)]−1 and the two-time correlation
function C(tw + t, tw) = (1 − 1/N)(N + tw)/(N + tw + t − 1). The existence of long-term memory
is inferred from the scaling of C(tw + t, tw) ∼ f (t/tw), denoting aging. Finally, we suggest ways
of investigating the robustness of this mechanism when competing processes are present.

In recent years there has considerable progress in identifying the mechanisms responsible
for long-term memory in glasses and other slowly relaxing systems, with processes such as
domain coarsening and diffusion over random free energy landscapes now well established
(see e.g. [1–3] and references therein). However, long-term memory has also been observed
in a class of systems, namely the so-called extremally driven models, for which there is no
obvious underlying mechanism. This is not a satisfactory state of affairs, as these models
have applications covering a broad range of physically important situations, in particular to
athermal and low temperature systems including granular media, flux creep, etc. One may
reasonably ask how we can ever expect to understand the real systems if even their simplified
models behave in a way that cannot be properly explained.

The defining characteristic of extremally driven models is that they are updated by
identifying an ‘active’ region of the system, and renewing this region whilst leaving the
remainder unaltered. The active subsystem is chosen according to some kind of extremal
criterion; often it will be centred on the location of the minimum (or, equivalently, the
maximum) of some spatially varying scalar variable, but other possibilities have been
considered. Models that belong to this class include invasion percolation [4], the Bak–Sneppen
model [5] and the granular shear model of Török et al [6], amongst others [7]. Recently, both
the Bak–Sneppen and granular shear models have been found to exhibit aging [6,8,9], which
indicates the existence of some form of long-term memory. The Bak–Sneppen model, along
with many other extremally driven models, is critical in the sense that it has been placed by
construction at a critical point (i.e. a continuous phase transition) of a broader phase diagram.
By contrast, the granular shear model of Török et al is not critical, so if the same mechanism
is responsible for both cases of aging, it cannot be due to any of the properties of the critical
state.
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In this Letter we demonstrate that extremal driving by itself is enough generate long-term
memory, and claim that this is the true cause of the aging observed in the Bak–Sneppen and
granular shear models. We further speculate that this mechanism is somewhat robust and
that many other extremally driven models will also age; to the best of our knowledge, such
behaviour has never been looked for in the other models in this class. The central part of
this work is the solution of the simplest extremally driven model, which is shown to age in
a similar manner to that observed in [6, 8]. Since the only mechanism in the model is the
extremal driving, it is reasonable to infer that this is the cause of the long-term memory. A
secondary aspect of this work is that the model can be exactly solved for all system sizes and
times. This allows the finite size effects and transient behaviour to be explicitly calculated,
which is rarely possible in systems exhibiting slow relaxation. It is also hoped that this work
will help to extend the relationship between extremal statistics and glassy relaxation that was
originally stressed by Bouchaud and Mézard [10].

The model to be studied here is defined as follows. The system consists of N elements
which are each assigned a single scalar variable xi , i = 1, . . . , N , drawn from the fixed
probability distribution function p(x). For every time step t → t + 1, the element with the
smallest xi in the system is selected and renewed by assigning it a new value of xi , which
is drawn from p(x) as before. Non-degeneracy is assumed, i.e. no two xi can take the same
value, which is valid as long as N is finite and p(x) contains no delta-function peaks. Selecting
the maximum rather than the minimum would result in entirely equivalent behaviour and we
henceforth restrict our attention to the minimum case only. This minimal model can be viewed
as a one-dimensional version of the granular shear model [6], or equally as the Bak–Sneppen
model without interactions [5].

Before solving the model, it is instructive to describe the emergence of long-term memory
in qualitative terms. For this system, as for any system subjected to extremal driving, the
typical values of xi increase monotonically in time. This means that any recently renewed
element is likely to have a smaller xi than the bulk, and hence a shorter than average lifespan
until it is again renewed. Correspondingly, elements that have not been renewed for some time
will have a longer than average life expectancy. This separation between the shortest- and the
longest-lived elements will become more pronounced as the system evolves and the average
xi in the bulk increases. Thus one might reasonably expect a broad distribution of relaxation
times, and the possibility of long-term memory.

To put this picture into a more precise framework, let Pt(S) be the probability to find the
system in a state S after t updates, where S = {x1, x2 . . . xN } (more formally the probability is
Pt(S)

∏N
i=1 dxi to simultaneously find the first variable in the range (x1, x1 + dx1), the second

in the range (x2, x2 + dx2), etc.) Only one of the xi changes value during a single time step.
Thus to find Pt+1(S) from Pt(S), one must integrate over the region of phase space in which
each of the xi is the smallest and replace it with a value drawn from p(x), i.e.

Pt+1(S) =
N∑

i=1

p(xi)

∫ mi

−∞
Pt(S

(i)) dx ′
i (1)

where the R
N−1 → R function mi is defined by

mi = min
j 	=i

{xj } (2)

and S(i) is shorthand for {x1, . . . , xi−1, x
′
i , xi+1, . . . , xN }. The factor of p(xi) on the right-hand

side of (1) can be removed by making the change of variables ui = ∫ xi

−∞ p(z) dz, 0 � ui � 1,
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giving

Qt+1(S) =
N∑

i=1

∫ mi

0
Qt(S

(i)) du′
i (3)

where Qt

∏N
i=1 dui = Pt

∏N
i=1 dxi . S, S(i) and mi are here defined exactly as in (1) and (2),

except with the xi replaced by ui . Scaling p(x) out of the master equation in this manner
reflects that, as in any extremally driven model, the dynamics depends only on the order of
the xi and not their relative spacings (note that there is no need to invoke universality to prove
this result).

Before proceeding to solve the master equation (3), it is useful to state and prove the
following identities. Firstly,

∫ mi

0
mt

j dui =



mt+1
i i = j

mt+1
i

t + 1
i 	= j.

(4)

The i = j case is trivial (since mj is independent of uj ), whereas for i 	= j observe that
mj ≡ ui over the entire range of integration, from which the result follows. Another useful
identity is

∫
Di

mt
j dV =




(N − 1)!(t + 1)!

(N + t)!
i = j

(N − 1)! t!

(N + t)!
i 	= j,

(5)

where Di is the domain of space in which ui is the smallest, and dV = ∏N
k=1 duk . This

can be proven by considering in turn each of the (N − 1)! subregions of Di defined by
ui < ul1 < ul2 < . . . < ulN−1 , where lk 	= i ∀k. For each permutation of the lk , the
integral limits for each of the du can be inserted and the integration evaluated. The final result
(5) then follows from summing over all the possible permutations.

The rescaled master equation (3) can be solved inductively from the initial state Q0 = 1
by using the first identity (4), giving

Qt(S) = (N + t − 1)!

t! N !

N∑
i=1

mt
i . (6)

That this is correctly normalized can be checked using the second identity (5). Since Qt is
symmetric in the mi and therefore the ui , the probability that any particular element in the
system, say uk , is the smallest at a given time tw is just 1/N . However, suppose it is known
that uk is not the smallest at tw . Then Qtw+1 can then be found by setting Qtw to zero in Dk ,
renormalizing, and iterating (3) once. This three-step procedure can be repeated to find the
following expression for Qk

tw+t,tw
(S), defined as the probability to find the system in a state S

at a time tw + t given that uk was not the minimum at any of the times tw, tw + 1, . . . , tw + t − 1,

Qk
tw+t,tw

(S) = 1

N − 1

(
N + tw + t − 1

N − 1

) ∑
i 	=k

m
tw+t
i t � 1. (7)

The corresponding probability that uk is the smallest, denoted here by qk
tw+t,tw

, can be calculated
by integrating (7) over Dk and using (5),

qk
tw+t,tw

= 1

N + tw + t
(8)
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which is independent of k. This demonstrates that the probability of an element being renewed
decreases with the time since it was last renewed, according to qk

tw+t,tw
∼ t−1 . Note that qk

tw+t,tw

also decreases with tw.
We are now in a position to calculate the physical quantities of interest, starting with the

persistence R(t) [11, 12]. R(t) is defined as the probability that a randomly chosen element i

has the same value of xi at time t that it had at t = 0. Clearly, R(0) = 1 and R(1) = (N−1)/N .
For t � 2, observe that R(t) only decreases when an element is renewed for the first time, so
R(t + 1) = (1 − qk

t,0) R(t) and hence from (8),

R(t) = R(1)

t−1∏
s=1

(
1 − qk

s,0

)
(9)

= N − 1

N + t − 1
(10)

∼
(

t

N − 1

)−θ

(11)

which defines the persistence exponent θ = 1. The slow decay of R(t) shows that a significant
proportion of the system will remain in its initial state until arbitrarily late times, already
suggesting some form of long-term memory. Note that there is no cut-off for finite system
sizes; R(t) asymptotically decays algebraically even for N = 2, as long as one averages over
all possible initial conditions and histories.

The existence of aging can be most clearly expressed in terms of the two-time correlation
function C(tw+t, tw) between the state of the system at times tw and tw+t . A suitable C(tw+t, tw)

for this model is the probability that a randomly chosen element has the same value of xi at tw
and tw + t (so C(t, 0) ≡ R(t)). As before, C(tw, tw) = 1, C(tw + 1, tw) = (N − 1)/N and

C(tw + t, tw) = C(tw + 1, tw)

tw+t−1∏
s=tw+1

(
1 − qk

s,tw

)
(12)

= N − 1

N

(
N + tw

N + tw + t − 1

)
t � 1. (13)

After a short transient this scales as

C(tw + t, tw) ≈ N − 1

N

(
1 +

t

tw

)−1
tw

N

 1. (14)

That t and tw only appear in the ratio t/tw is what we mean by aging. Finally, note that in
the limit N → ∞, the N -dependence of (10) and (13) can be removed by renormalizing the
timescale to τ ≡ t/N , giving R(τ) = (1 + τ)−1 and C(τw + τ, τw) = (τw + 1)/(τw + τ + 1),
respectively.

We have now achieved what we set out to do, i.e. demonstrate that even the simplest
extremally driven model has long-term memory, as evident from the aging of C(tw + t, tw)

in (14), and the slow decay of R(t) (10). From this we infer that the extremally driven renewal
is responsible for the aging observed in [6,8,9] and speculate that other extremal models, such
as invasion percolation, may also age in a similar fashion. However, it should be stressed
that not all extremally driven models will necessarily exhibit aging. Indeed, it is already
known that including noise-like terms, by renewing randomly selected elements as well as
the extremal one, introduces an exponential cut-off to the relaxation times and destroys the
long-term memory (this situation is realized in the mean-field version of the Bak–Sneppen
model, for instance [13]). Thus a useful step forward from this work might be to consider
modified versions of the model, to see what physical processes may enhance or disrupt the
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effects of extremal driving. To this end, we tentatively suggest that the following modifications
might be particularly worthy of investigation: introducing quenched disorder (by assigning
each element its own generating distribution pi(xi)), allowing the values of xi before and after
renewal to be correlated, and letting the time step between updates be dependent on the xi .
It is especially hoped that these and other enhancements could be treated within the exact
framework developed here.

In summary, we have argued that systems which are renewed according to an extremal
criterion should be expected to exhibit long-term memory, and have supported this claim by
showing that even the minimal extremally driven model ages. Expressions were found for the
persistence R(t) and the two-time correlation function C(tw + t, tw) which corroborate these
claims. Finally, we note that this work also constitutes an instance where the extremal properties
of a system of correlated random variables can be exactly computed. To our knowledge, this
makes it one of few such systems known [14–16].

This work was funded under UK EPSRC grant no. GR/M09674.
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[10] Bouchaud J-P and Mézard M 1997 J. Phys. A: Math. Gen. 30 7997
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